Introduction

In eukaryotic cells, genomic DNA of eukaryotes is compacted within the nucleus in the form of chromatin in which individual DNA fibre wraps around histone octamers to form nucleosomes [1]. Thus, chromatin-remodelling factors play important roles during transcription, particularly those that are mediated by RNA polymerase II (RNAPII). First, chromatin-remodeling factors can enhance the recruitment of RNA polymerase to the promoter-proximal region immediately upstream of the transcription start site (TSS), a prerequisite for the establishment of transcriptional machinery, i.e. the formation of the so-called preinitiation complex (PIC) [2]. Therefore, the presence of nucleosomes at the vicinity of individual TSS represents a potential structural barrier for the establishment of PIC [3, 4]. Recent studies have revealed that most eukaryotic genes contain an evolutionary conserved nucleosome-free region (NFR) immediately upstream of their TSS’s [3, 5-7]. This NFR provides a site for the initial recruitment of transcription regulators. However, other chromatin modulators, such as SWI/SNF chromatin-remodeling complex, are required in order to facilitate the assembly of a bulky PIC complex at a promoter [3, 8]. In addition, chromatin-remodeling factors also have important roles in other aspects of RNAPII transcription. For examples, they can function to modulate the process of transcription elongation and/or pre-mRNA processing [8]. The mechanism by which these chromatin modulators modulate RNAPII transcription in mammalian cells has not been fully understood to date.

RECQL5 is a member of the human RecQ DNA helicase family. DNA helicases are enzymes that catalyze the conversion of individual double stranded DNA molecules into their correspond-
Purification of RECQL5-SWI/SNF-RNAPII super complex

Single stranded forms and therefore are involved in many important aspects of DNA transaction, including gene transcription, DNA replication, repair and recombination [9]. The human RecQ helicase family are members of the RecQ helicase super-family, which share a high degree of homology with the founding member, the RecQ helicase of *E. coli* [10]. To date, RecQ helicases have been shown to have important roles in DNA repair, recombination and DNA replication [11-13], consistent with their intrinsic DNA helicase activities. The functional importance of the human RecQ helicases are underscored by the recent discovery that mutations in three different RecQ helicase-encoding genes give rise to several human genetic diseases, including Bloom, Werner, and Rothmund-Thomson syndrome, respectively [14].

RECQL5 and RECQL represent two additional members of the mammalian RecQ helicase family. The RECQL5 gene was first cloned in 1998 based on its homology to other members of the RecQ helicase family [15]. It encodes multiple transcripts via alternative RNA processing [16]. However, to date, only the largest predicted protein product from these transcripts, i.e. RECQL5beta, have been detected in a significant quantity in both mice and humans [16, 17], suggesting that it is the main isoform expressed in mammalian cells. *In vitro* biochemical studies showed that RECQL5 could unwind double strand DNA as other helicases. Interestingly, it also exhibits a unique single strand annealing activity [18], has high affinities to fork-like structures [19], and contains a PCNA-interacting pocket (PIP) motif and could interact with PCNA both *in vitro* and *in vivo* [19]. In addition, RECQL5 interacts with RAD51 and the MRE11-RAD50-NBS1 complex [20, 21]. Functional studies in mice and human cultured cells have shown that Recql5/RECQL5 helicase has important roles in both DNA replication and homologous recombination [20, 22, 23]. Moreover, Recq5 knockout mice are prone to sporadic cancers [20], signifying the functional importance of this unique member of the mammalian RecQ helicase family in tumor suppression.

Intriguingly, several recent studies have revealed a direct physical interaction between RECQL5 and RPB1, the largest subunit of the RNA polymerase II (RNAPII) core complex [24-27]. Moreover, a recent study has shown that RECQL5 affects both initiation and elongation of RNAPII-mediated *in vitro* transcription from naked DNA templates [27]. Here, we report the immunoaffinity purification of a novel RECQL5-containing complex of a very high molecular mass using newly produced anti-RECQL5 polyclonal antibodies. Mass spectrometry analysis revealed that this complex comprises primarily the components of the RNAPII core complex and the SWI/SNF chromatin-remodeling complex. RECQL5 is present in RNAPII holoenzyme. These findings in conjunction with those from previous studies reveal novel temporal and structural information regarding the interaction between RECQL5 and RNAPII and suggest that RECQL5 may have a role in RNAPII transcription during the initial assembly of the PIC and/or at the elongation phase of RNAPII transcription.

Materials and methods

Antibodies and Other Reagents

Anti-RPB1 antibodies were purchased from commercial vendors (8WG16, H5, H14 from Convance; N20 from Santa Cruz). Antibodies for BRG1, BAF170, BAF155, and SNF5 were kindly provided by Dr. Weidong Wang's group at the National Institute of Aging, USA. Rabbit polyclonal anti-RECQL5 antibodies were produced by Pocono Rabbit Farm and Laboratory Inc (PA) using a recombinant polypeptide corresponding to amino acid 661 to 880 of human RECQL5beta. The antigen was produced in *E. coli*. The antibodies were purified by a two-step affinity column chromatography (a CNBR-GST column followed by a CNBR-HQ5C antigen column) procedure as described [28]. All of the other reagents, unless specified otherwise, were purchased from Sigma (Sigma, MO).

Plasmid Constructs

pGEX-2TK-HQ5C, the vector that was used to generate the antigen for producing anti-RECQL5, was constructed as follows. First, a pair of oligos: 5'-GATCTGAGAGCTCGGAGCAG-3', and 5'-GATCGTGGCTCCGAGCAGCAG-3' was ligated into BamHI-cut pGEX-2TK vector (Amersham, NJ) converting the BamHI site into a BamHI-SacI sequence to obtain pGEX-2TK-HQ5C vector. The sequence corresponding to amino acid 661 to 880 of human RECQL5beta was ligated into BamHI-cut pGEX-2TK vector (Amersham, NJ) converting the BamHI site into a BamHI-SacI sequence to obtain pGEX-2TK-BS. The sequence corresponding to amino acid 661 to 880 of human RECQL5beta was first amplified by PCR with the appropriate primers: 5'-CTAGGAGCTCAGAGGCTGCTCC-3' and 5'-CGTAGATGTATACGGGAGAGGCTTGG.
CTG-3'. This PCR product was then digested with
BamHI plus SacI to a BamHI- SacI fragment and cloned into
BamHI-Sacl doubly digested pGEX-2TK-B to derive pGEX-2TK-HQ5C,
which is expected to express a GST-HQ5C fusion protein when transformed into the E coli strain
BL21. This PCR product was then digested with
BamHI plus SacI fragment and cloned into a
BamHI- SacI fragment. The protocol for this experiment has been de-
scribed[29]. Briefly, HeLa S3 cells were grown in suspension culture and expanded
to 60 liters. Cells were then harvested at log
phase by centrifugation. Cell pellets were re-
suspended in five volumes of Low Salt Buffer A
(20 mM TRIS (pH 7.9), 1.5 mM MgCl2, 10 mM
KCl, 0.5 mM phenylmethylsulfonyl fluoride
(PMSF), and 0.5 mM dithiothreitol (DTT)) and
icubated for 10 minutes on ice. The cell sus-
pension was then centrifuged at 420 g for 5
minutes. The cell pellet was re-suspended again
in two volumes of the same low salt buffer and
processed using a Dounce homogenizer with a
type B pestle. The crude nuclear pellet was ob-
tained by centrifugation at 10,000 g for 10 min-
utes and re-suspended in 0.5 volume of Low
Salt Buffer B (20 mM TRIS (pH 7.9), 1.5 mM
MgCl2, 25% glycerol, 10 mM NaCl, 0.2 mM
EDTA, 0.5 mM phenylmethylsulfonyl fluoride,
and 0.5 mM DTT plus cocktail inhibitors). An
equal volume of High Salt Buffer (20 mM TRIS
(pH 7.9), 1.5 mM MgCl2, 25% glycerol, 1.2 M
NaCl, 0.2 mM EDTA, 0.5 mM phenylmethylsul-
fonyl fluoride, and 0.5 mM DTT plus cocktail
inhibitors) was then added drop by drop and
icubated with rotation at 4°C for 30 minutes. After the incubation, nuclear extract was har-
vested by centrifugation at 12,000 g for 15 min-
utes followed by an overnight dialysis in Storage
Buffer (20 TRIS (pH 7.9), 20% glycerol, 100 mM
KCl, 0.2 mM EDTA, 0.5 mM PMSF, and 0.5 mM
DTT) to obtain the final preparation of nuclear
extract. This nuclear extract was snap frozen
and stored at -80°C.

P11 ion-exchange chromatography

The procedure has been described previously
[30]. Briefly, for each experiment, 60 ml of nu-
clear extract was loaded onto a 60-ml P11
phosphocellulose column (Whatman) at a flow
rate of 1 column volume (CV)/hour. The column
was washed with 3 CVs of BC100 or BC buffer
(20% glycerol, 20 mM TRIS-HCl, pH 7.9, at 4°C,
Purification of RECQL5-SWI/SNF-RNAPII super complex

0.2 mM EDTA, 0.5 mM PMSF, 1.0 mM DTT) with 100 mM KCl and then step-eluted with 2.5 CVs each of BC300, BC500, BC850, BC1200 to obtain P.3, P.5, P.85, and P.1.2 fractions, respectively. These individual fractions, when necessary, were dialyzed overnight against 4 liters of BC100 for 90 minutes, and then centrifuged at 14,000 rpm for 15 minutes to remove insoluble debris.

Antibody affinity purification and mass spectrometry analysis

The experiment was performed as described [28]. Briefly, anti-RECQL5 antibodies were immobilized onto agarose beads. The binding efficiency of the antibodies was estimated by PAGE gel electrophoresis followed by Commassie staining. Then, 20 µl of beads (with approximately 4 ug antibodies) was incubated with 2 ml of P.5 fraction from the P11 fractionation experiment at 4°C for 6 hours. The beads were then washed three times with BC300 plus two times with BC100. Bound polypeptides were eluted in 0.1 M glycine (pH 2.5) twice and the elutant was neutralized by 1/10 volume of 1 M Tris-HCl (pH 8.0). In the meantime, a control set of experiments was performed using preimmune IgG-conjugated beads. An aliquot of the elutants was run on a 12% gel and visualized by silver staining (ICN Biomedicals, Aurora, OH). A sample with the best enrichment was run on a regular PAGE gel, stained with GelcodeTM Blue Stain Reagents (Pierce, IL). The lane with the IP product was excised. Then, three portions (the part above the 250 kDa marker, the part below the 22 kDa marker, and a segment of about 6 mm corresponding to the IgG band, respectively) were removed. Finally, the rest of sample was sliced into segments of 2-3 mm, depending on their relative position to visible bands (if there was any nearby) and analyzed using a LC-MS/MS system (ProtTech, PA).

In vitro interaction between RECQL5 and the RNAPII core complex

For in vitro co-incubation between purified recombinant RECQL5 and RNAPII core complex, 200 ng of purified RNA pol II core complex was mixed with 500 ng of RECQL5 protein and incubated for 2 hours at 4°C. Following incubation, 1 µg of RECQL5 antibodies and 20 µl of protein A beads were added to capture the immuno-complex for an additional hour. The beads were washed three times with BC300 and 2 times with BC100 plus 0.1% Nonidet P 40. Bound polypeptides were then eluted in 40 µl of 2X sample buffer. Similar experiments were carried out using purified RNAPII-holo enzyme [29], rather than purified RNAPII core complex.

Size exclusion column chromatography

P.5 or the immunoprecipitated product was fractionated by size exclusion column chromatography as described [31]. Briefly, for each experiment, a Superose 6 (10/300 GL) column (GE Healthcare) was equilibrated with modified BC200 (20 mM Tris-HCl, pH 7.9, 1 mM EDTA, 200 mM KCl, 5% glycerol and calibrated with a defined Gel Filtration Standard (BIO-RAD). Then, 200 µl of either P.5 fraction from the P11 fractionation experiment or the product of the immunoaffinity purification experiment was applied to the column. Fractions (500 µl) were collected and analyzed by SDS-PAGE followed by Western blotting.

Immunoprecipitation

The immunoprecipitation (IP) experiments were performed as described [32]. Briefly, for each experiment, the corresponding immunoglobin, i.e. IgG or IgM was used as negative control. Nuclear extract, whole cell lysate, chromatin-bound protein portion or P.5 was first clarified by centrifugation and 2-5 µg of primary antibody was added to the clarified sample and the reaction was incubated for 6-12 hours in the cold room, protein A or protein G beads were added to capture the IgG and its associated antigens for additional 2 hours. The bead complex was washed sequentially three times each with BC300 and 2 times with BC100 plus 0.1% Nonidet P-40. The IgG-bound polypeptides were then eluted with 2X sample buffer.

Results

Identification of RECQL5-interacting polypeptides

As part of our ongoing effort to elucidate the molecular basis through which RECQL5 functions in humans, we have undertaken a biochemical study to identify RECQL5-interacting polypeptides. First, a rabbit anti-RECQL5 polyclonal antiserum was raised against a recombinant polypeptide corresponding to the last 220
Purification of RECQL5-SWI/SNF-RNAPII super complex

Amino acids of the human RECQL5beta protein (referred to as RECQL5 hereon). The presumptive anti-RECQL5 antibodies were then purified by affinity chromatography against the antigen. Western blot with these antibodies showed that they could be used to detect a single band with the expected size for human RECQL5 in total lysates from HeLa cells (Figure 1B, and data not shown). Preliminary studies also indicated that these antibodies could be used to pull down RECQL5 (data not shown). Thus, these affinity-purified anti-RECQL5 antibodies were used to isolate RECQL5-containing complexes by immuno-affinity purification. To increase specificity, an ion exchange chromatography step was included as an additional measure to enrich RECQL5-containing complex(es) before the antibody-affinity purification step (Figure 1B). This resulted in a significant enrichment of the RECQL5-containing complexes in the fraction eluted with 0.5 mM KCl, the P.5 fraction (Figure 1B). Immunoprecipitation (IP) using this P.5 fraction resulted in a significant enrichment of a limited number of protein bands as revealed by silver staining of the SDS-PAGE gel of the IP products (Figure 2A). Importantly, mass spectrometry analysis of the IP product identified primarily components of RNAPII and SWI/SNF chromatin-remodeling complex (Fig 2B). The identified RNAPII components include RPB1, RPB2, RPB3, and RPB5, which represent essentially all components of RNAPII core complex within the 22-250 kDa range. The identified...
SWI/SNF proteins include BRG1, BAF170, BAF155, BAF60b, BAF57, BAF47/SNF5 and β-actin, which appear to represent all but BAF53 of a BGR1-containing SWI/SNF BAF complex within the range of molecular weight between 22 to 250 kDa [33, 34]. In addition, five other proteins (INT1, DTX3L; KARS, Tubulin a-3C/D chain and β-actin) were also identified (Figure 2A, 2B).

Confirmation of RECQL5-RNAPII and RECQL5-SWI/SNF interactions

The result from the mass spectrometry analysis suggested that RECQL5 interacts with both the core complex of RNAPII and SWI/SNF chromatin-remodeling complex. Thus, additional IP experiments were carried out to verify these interactions. We found that several components of the SWI/SNF complex could be effectively pulled down by our anti-RECQL5 antibodies (Figure 2A). Similarly, the anti-RECQL5 antibodies also effectively pulled down RPB1 (Figure 2B), the largest subunit of RNAPII core complex. These data confirm that indeed RECQL5 physically interact with both SWI/SNF chromatin-remodelling complex and RNAPII core complex. In human cells, the RNAPII can exist as either a hypophosphorylated or a hyperphosphorylated, depending on the phosphorylation status of the C-terminal domain of RPB1, the largest subunit of RNAPII [35, 36]. The hyperphosphorylated RNAPII (RNAPIIO) migrates slower than its hypophosphorylated counterpart (RNAPIIA) on a SDS-PAGE gel and therefore could be distinguished from the hypophosphorylated form. The data presented in Figure 3 showed that RECQL5 could interact with RNAPIIA (Figure 3B). However, as the level of RNAPIIO in the test sample was very low, the data were not sufficient to indicate whether RECQL5 could also interact with RNAPIIO. In order to address this question, a series of pull-down experiments were carried out using three different anti-RPB1 antibodies (N20, 8WG16 and H14, respectively). N20 is a pan-RPB1 antibody and hence is used to detect both the hypophosphorylated and hyperphosphorylated forms of the protein, but not by pre-immune IgG. Note that the RPB1 from this cell lysate is predominantly hypophosphorylated. C. Reciprocal IP of RECQL5 using three different anti-RPB1 antibodies: N20, a pan-RPB1 antibody; 8WG16, an antibody specific for hypophosphorylated RPB1; H14, an antibody specific for hyperphosphorylated RPB1. Note that slower-migrating hyperphosphorylated RPB1 that was pulled down by N20 and H14, but not by 8WG16. Again, the pre-immune IgG was included as a negative control.
Co-fractionation of RECQL5 with components of both SWI/SNF and RNAPII core complex

Several groups have recently reported the physical interaction of RECQL5 and RNAPII core complex [24-26]. Thus, our finding that RECQL5 interacts with both SWI/SNF complex and RNAPII core complex prompted us to ask whether RECQL5-SWI/SNF interaction reflects the presence of a previously unknown RECQL5-SWI/SNF complex in addition to the RECQL5-RNAPII complex or a RECQL5-SWI/SNF-RNAPII super complex, or both. To address this question, we examined the mass of the RECQL5-containing complex or complexes within the affinity-purified product by size exclusion column chromatography. We found that the bulk of RECQL5 in the purified product was eluted in fractions with a mass more than 2000 kDa (Figure 4A). These data indicate that our immunoaffinity purification has yielded primarily a RECQL5-containing complex or complexes of more than 2000 kDa.

Intriguingly, however, when the P.5 fraction was subjected to the same size exclusion column,
Purification of RECQL5-SWI/SNF-RNAPII super complex

Components of either SWI/SNF complex, RNAPII core complex, or both.

Direct interaction between RECQL5 and RNAPII core complex

RNAPII holo-enzyme contains SWI/SNF [29, 37]. As both RNAPII core complex and RNAPII holo-enzyme complex are routinely purified and used for various types of in vitro reconstituted transcription assay, we examined whether RECQL5 was co-purified as an integral component in either of these two RNAPII preparations. Analysis of previously purified RNAPII core complex and RNAPII holo-enzyme preparations [30] by Western blot revealed that RECQL5 could not be detected in RNAPII core complex preparation by standard Western blotting (at 0.2 microgram core RNAPII, Figure 5A). In contrast, RECQL5 was readily detectable in the RNAPII holo-enzyme preparation even when the amount of RPB1 was undetectable under our western blot condition (at 0.10 microgram RNAPII holo-enzyme, Figure 5B). Similarly, SNF5, a component of SWI/SNF complex, was detected in the RNAPII holoenzyme preparation but not in RNAPII core complex (Figure 5A, 5B). These data therefore show that at least a fraction of RNAPII holo-enzyme contains RECQL5 and/or SWI/SNF complex.

We have shown earlier that RECQL5 could interact with the hyperphosphorylated form of RPB1 (Figure 3C), suggesting that RECQL5 can interact directly with RNAPII core complex even in the absence of SWI/SNF complex. To test this hypothesis, we examined whether purified recombinant RECQL5 protein could interact with purified RNAPII core complex. Recombinant RECQL5 protein was produced using the Baculovirus system in insect cells (Figure 5C). When purified RECQL5 was incubated with purified RNAPII core complex, it enabled the capturing of RPB1 onto the agarose beads that are pre-coated with anti-RECQL5 antibodies (Figure 5D), providing direct proof that RECQL5 interact directly with RNAPII core complex.

Discussion

We reported here biochemical data for both RECQL5-RNAPII and RECQL5-SWI/SNF interactions. The finding that RECQL5 interacts with RNAPII core complex is consistent with recent reports that show a direct physical interaction...
between RECQL5 and RNAPII [24-26]. This unique interaction between RECQL5 and RNAPII suggests a potential role of RECQL5 in RNAPII transcription or an RNAPII-related process(es). A recent study showed that RECQL5 had an inhibitory effect on both initiation and elongation of RNAPII-mediated transcription from naked DNA templates in an in vitro reconstituted transcription assay [27]. Interestingly, our immunoaffinity purification experiment using a newly raised anti-RECQL5 antibody had led to the specific purification of a RECQL5-containing complex or complexes of more than 2000 kDa from the P.5 fraction of a P11 ion exchange chromatography-fractionated nuclear extract from HeLa S3 cells (Figure 4A). Importantly, mass spectrometry analysis of this affinity purification product revealed the presence of components of both SWI/SNF chromatin-remodeling complex and RNAPII core complex. The existence of a high molecular weight complex within which RECQL5 and RPB1 could physically interact has been reported previously. But the nature of this complex has not been determined [24]. Thus, this is the first report on the existence of a super complex that contains both RECQL5 and components of SWI/SNF chromatin-remodeling complex.

The co-purification of components from both SWI/SNF complex and RNAPII core complex by immunoaffinity purification using anti-RECQL5 antibodies suggests the existence of a RECQL5-containing super complex that also contains components of both SWI/SNF complex and RNAPII core complex, although it remains possible that RECQL5 interacts with SWI/SNF complex and RNAPII core complex in separate entities within this immunoaffinity purification product. However, we also found that both RECQL5 and SNF5 (a component of SWI/SNF complex) were present in RNAPII holoenzyme that was previously purified based on a widely used Flag-tagged RPB3 strategy (Figure 5, [29]). In addition, human SWI/SNF complex has been shown to co-purify and co-immunoprecipitate with RNAPII holoenzyme [37-39]. More recently, it has also been shown that RECQL5 could be pulled down in antibody-affinity purification experiments using Flag-tagged components of the mediator complex as baits [40], providing additional support that RECQL5 is present at the pre-initiation complex on at least some RNAPII-transcribed genes. Together, these data strongly suggest that we have in fact purified a previously unknown RECQL5-containing super complex that includes most, perhaps all components of both SWI/SNF chromatin-remodeling complex and RNAPII core complex. In addition, these data provide a clue to the temporal arrangement of this RECQL5-SWI/SNF-RNAPII interaction, i.e., during the assembly of the PIC complex. It should be noted that purification of a presumptive promoter-bound PIC complex from a nuclear extract preparation is not unexpected since PIC complex is present in nuclear extract.

In yeast, chromatin modulators, including SWI/SNF complex, play an important role in the initiation of transcription by facilitating the assembly of transcription complex at individual nucleosome-bound promoters [41]. The recruitment of SWI/SNF by gene-specific regulators to human genes has also been reported [42-44]. Our data showed that within the range of molecular weight analyzed, all but one component (i.e., BAF53) of an SWI/SNF BAF complex were effectively pulled down by our anti-RECQL5 antibodies. The inability to detect BAF53 by our analysis is expected since BAF53 was excluded from our mass spectrometry analysis after the gel slice containing the 50 kDa IgG heavy chain was discarded (see Materials and Methods). Thus, our data indicate that RECQL5 interacts specifically with the BAF subtype among the BRG1-containing SWI/SNF complexes. In this regard, it can be envisaged that RECQL5 can either affect the recruitment of SWI/SNF chromatin-remodeling complex to specific promoters to aid in the assembly of a bulky RNAPII transcription machinery on individual nucleosome-bound promoters or the activity of these chromatin modulators once they are recruited to individual promoters. In addition, it remains to be determined whether such a RECQL5-SWI/SNF-RNAPII interaction is restricted to a specific subset of genes or represents a general phenomenon during the assembly of PIC in human cells. In any case, it is likely that RECQL5 has a role in transcriptional regulation of at least a subset of genes. Interestingly, recent studies have shown that BRG1-dependent chromatin-remodeling complexes play key roles in proliferation and differentiation in many types of cells and tissues [45]; and BRG1 is essential for embryonic development in mice [46]. In addition, BRG1-containing SWI/SNF complex occupies the promoters of a specific subset of genes in mouse embryonic stem (ES) cells and play an
important role in maintaining the homeostasis of these ES cells [47, 48]. In addition, it should also be noted that RECQL5 could interact with RNAPIo as well. Thus, it remains possible that RECQL5 may also have a role in RNAPII transcription elongation. Future experiments are required to address these important issues and to formally assess the in vivo role of RECQL5 in RNAPII transcription and/or related process(es).

Acknowledgement

We are grateful to Drs. Peter Harte for discussion and his comments on the manuscript. This study was supported by the following grants: 01-E-109 (G.L.) from the Kinship Foundation; and RO1 CA112094 (G.L.), RO1NS049103 (H.L.), RO1CA103867, R01CA124760 (C.-M. C.) from the US National Institutes of Health.

Please address correspondence to: Guangbin Luo, PhD, Department of Genetics, School of Medicine, Case Western Reserve University, Biomedical Research Building 720, 2109 Adelbert Road, Cleveland, OH 44106-4955, USA. Tel: 1-(216)-368-4883; Fax: 1-(216)-368-3432; E-mail: guangbin.luo@case.edu

References

Recql5 and Blm RecQ DNA helicases have non-redundant roles in suppressing crossover. Mol Cell Biol 2005; 25: 3431-3442.

